Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(1): pgad433, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193136

RESUMO

The spatial organization of various cell populations is critical for the major physiological and pathological processes in the kidneys. Most evaluation of these processes typically comes from a conventional 2D tissue cross-section, visualizing a limited amount of cell organization. Therefore, the 2D analysis of kidney biopsy introduces selection bias. The 2D analysis potentially omits key pathological findings outside a 1- to 10-µm thin-sectioned area and lacks information on tissue organization, especially in a particular irregular structure such as crescentic glomeruli. In this study, we introduce an easy-to-use and scalable method for obtaining high-quality images of molecules of interest in a large tissue volume, enabling a comprehensive evaluation of the 3D organization and cellular composition of kidney tissue, especially the glomerular structure. We show that CUBIC and ScaleS clearing protocols could allow a 3D analysis of the kidney tissues in human and animal models of kidney disease. We also demonstrate that the paraffin-embedded human biopsy specimens previously examined via 2D evaluation could be applicable to 3D analysis, showing a potential utilization of this method in kidney biopsy tissue collected in the past. In summary, the 3D analysis of kidney biopsy provides a more comprehensive analysis and a minimized selection bias than 2D tissue analysis. Additionally, this method enables a quantitative evaluation of particular kidney structures and their surrounding tissues, with the potential utilization from basic science investigation to applied diagnostics in nephrology.

2.
J Am Soc Nephrol ; 34(7): 1222-1239, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37134307

RESUMO

SIGNIFICANCE STATEMENT: Nuclear translocation of dendrin is observed in injured podocytes, but the mechanism and its consequence are unknown. In nephropathy mouse models, dendrin ablation attenuates proteinuria, podocyte loss, and glomerulosclerosis. The nuclear translocation of dendrin promotes c-Jun N -terminal kinase phosphorylation in podocytes, altering focal adhesion and enhancing cell detachment-induced apoptosis. We identified mediation of dendrin nuclear translocation by nuclear localization signal 1 (NLS1) sequence and adaptor protein importin- α . Inhibition of importin- α prevents nuclear translocation of dendrin, decreases podocyte loss, and attenuates glomerulosclerosis in nephropathy models. Thus, inhibiting importin- α -mediated nuclear translocation of dendrin is a potential strategy to halt podocyte loss and glomerulosclerosis. BACKGROUND: Nuclear translocation of dendrin is observed in the glomeruli in numerous human renal diseases, but the mechanism remains unknown. This study investigated that mechanism and its consequence in podocytes. METHODS: The effect of dendrin deficiency was studied in adriamycin (ADR) nephropathy model and membrane-associated guanylate kinase inverted 2 ( MAGI2 ) podocyte-specific knockout ( MAGI2 podKO) mice. The mechanism and the effect of nuclear translocation of dendrin were studied in podocytes overexpressing full-length dendrin and nuclear localization signal 1-deleted dendrin. Ivermectin was used to inhibit importin- α . RESULTS: Dendrin ablation reduced albuminuria, podocyte loss, and glomerulosclerosis in ADR-induced nephropathy and MAGI2 podKO mice. Dendrin deficiency also prolonged the lifespan of MAGI2 podKO mice. Nuclear dendrin promoted c-Jun N -terminal kinase phosphorylation that subsequently altered focal adhesion, reducing cell attachment and enhancing apoptosis in cultured podocytes. Classical bipartite nuclear localization signal sequence and importin- α mediate nuclear translocation of dendrin. The inhibition of importin- α / ß reduced dendrin nuclear translocation and apoptosis in vitro as well as albuminuria, podocyte loss, and glomerulosclerosis in ADR-induced nephropathy and MAGI2 podKO mice. Importin- α 3 colocalized with nuclear dendrin in the glomeruli of FSGS and IgA nephropathy patients. CONCLUSIONS: Nuclear translocation of dendrin promotes cell detachment-induced apoptosis in podocytes. Therefore, inhibiting importin- α -mediated dendrin nuclear translocation is a potential strategy to prevent podocyte loss and glomerulosclerosis.


Assuntos
Glomerulonefrite por IGA , Glomerulosclerose Segmentar e Focal , Podócitos , Humanos , Camundongos , Animais , Podócitos/metabolismo , Albuminúria/metabolismo , alfa Carioferinas/metabolismo , Sinais de Localização Nuclear/metabolismo , Doxorrubicina/metabolismo , Glomerulonefrite por IGA/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo
4.
Kidney Int ; 99(2): 382-395, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33144214

RESUMO

Podocytes are highly specialized cells within the glomerulus that are essential for ultrafiltration. The slit diaphragm between the foot processes of podocytes functions as a final filtration barrier to prevent serum protein leakage into urine. The slit-diaphragm consists mainly of Nephrin and Neph1, and localization of these backbone proteins is essential to maintaining the integrity of the glomerular filtration barrier. However, the mechanisms that regulate the localization of these backbone proteins have remained elusive. Here, we focused on the role of membrane-associated guanylate kinase inverted 2 (MAGI-2) in order to investigate mechanisms that orchestrate localization of slit-diaphragm backbone proteins. MAGI-2 downregulation coincided with a reduced expression of slit-diaphragm backbone proteins in human kidneys glomerular disease such as focal segmental glomerulosclerosis or IgA nephropathy. Podocyte-specific deficiency of MAGI-2 in mice abrogated localization of Nephrin and Neph1 independently of other scaffold proteins. Although a deficiency of zonula occuldens-1 downregulated the endogenous Neph1 expression, MAGI-2 recovered Neph1 expression at the cellular edge in cultured podocytes. Additionally, overexpression of MAGI-2 preserved Nephrin localization to intercellular junctions. Co-immunoprecipitation and pull-down assays also revealed the importance of the PDZ domains of MAGI-2 for the interaction between MAGI-2 and slit diaphragm backbone proteins in podocytes. Thus, localization and stabilization of Nephrin and Neph1 in intercellular junctions is regulated mainly via the PDZ domains of MAGI-2 together with other slit-diaphragm scaffold proteins. Hence, these findings may elucidate a mechanism by which the backbone proteins are maintained.


Assuntos
Glomerulosclerose Segmentar e Focal , Podócitos , Animais , Guanilato Quinases , Junções Intercelulares , Glomérulos Renais , Camundongos
6.
Am J Physiol Renal Physiol ; 315(5): F1336-F1344, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30110567

RESUMO

In many cells and tissues, including the glomerular filtration barrier, scaffold proteins are critical in optimizing signal transduction by enhancing structural stability and functionality of their ligands. Recently, mutations in scaffold protein membrane-associated guanylate kinase inverted 2 (MAGI-2) encoding gene were identified among the etiology of steroid-resistant nephrotic syndrome. MAGI-2 interacts with core proteins of multiple pathways, such as transforming growth factor-ß signaling, planar cell polarity pathway, and Wnt/ß-catenin signaling in podocyte and slit diaphragm. Through the interaction with its ligand, MAGI-2 modulates the regulation of apoptosis, cytoskeletal reorganization, and glomerular development. This review aims to summarize recent findings on the role of MAGI-2 and some other scaffold proteins, such as nephrin and synaptopodin, in the underlying mechanisms of glomerulopathy.


Assuntos
Proteínas de Transporte/metabolismo , Barreira de Filtração Glomerular/metabolismo , Taxa de Filtração Glomerular , Glomerulonefrite/metabolismo , Síndrome Nefrótica/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose , Proteínas de Transporte/genética , Transição Epitelial-Mesenquimal , Predisposição Genética para Doença , Barreira de Filtração Glomerular/patologia , Barreira de Filtração Glomerular/fisiopatologia , Glomerulonefrite/genética , Glomerulonefrite/patologia , Glomerulonefrite/fisiopatologia , Guanilato Quinases , Humanos , Mutação , Síndrome Nefrótica/genética , Síndrome Nefrótica/patologia , Síndrome Nefrótica/fisiopatologia , Podócitos/metabolismo , Podócitos/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...